

Orckestra, Europe

Nygårdsvej 16

DK-2100 Copenhagen

Phone +45 3915 7600

www.orckestra.com

A Guide to Console Appl ications

2018-08-15

Page 2 of 50 A Guide to Console Applications

Contents

1 INTRODUCTION .. 4

1.1 Who Should Read This Guide? 4
1.2 Getting Started 4
1.3 Terms and Abbreviations 5

2 AN OVERVIEW OF CONSOLE APPLICATIONS ... 7

2.1 A General Procedure of Creating Console Applications 10
2.2 Creating a Tree Definition File 11
2.3 A Quick Overview of a Tree Definition 12

3 HOW TO ATTACH CONSOLE APPLICATIONS .. 15

3.1 How to Auto-Attach Applications 16
3.2 How to Allow Attaching Applications Manually 18

4 HOW TO ATTACH ELEMENTS TO TREE STRUCTURES 20

4.1 Simple Elements 21
4.2 Data Elements 22
4.3 How to Use Values from Data Type Fields 23
4.4 How to Use Localized Strings 23
4.5 How to Display Elements in Custom Perspectives 24
4.6 How to Group Multiple Tree Definitions in One Perspective 25
4.7 How to Display Custom URLs in the C1 Console for Elements 28

5 HOW TO GROUP DATA ELEMENTS ... 30

6 HOW TO SORT DATA ELEMENTS .. 32

7 HOW TO FILTER DATA ELEMENTS .. 33

7.1 How to Filter Data Elements by Parent ID 33
7.2 How to Filter Data Elements by Field 33
7.3 How to Filter Data Elements with CMS Functions 34

8 HOW TO ATTACH ACTIONS TO TREE ELEMENTS ... 36

9 HOW TO EXECUTE STANDARD DATA WORKFLOWS 37

9.1 How to Add Data 37
9.2 How to Edit Data 38
9.3 How to Delete Data 38
9.4 How to Use Custom Forms 39

10 HOW TO EXECUTE CUSTOM COMMANDS .. 40

10.1 How to Execute Custom Workflows 40
10.2 How to Open ASPX Pages 41
10.3 How to Execute CMS Functions 43

11 HOW TO DISPLAY MESSAGES ... 46

11.1 How to Display Message Boxes 46
11.2 How to Display Confirmation Boxes 47

12 TROUBLESHOOTING ... 48

12.1 My Application Won’t Show Up Automatically 48
12.2 There Is No “Add Application” Menu Command 48
12.3 An Application Won’t Appear in Its Own Perspective 48

Page 3 of 50 A Guide to Console Applications

12.4 There Are No Elements in the Tree 48
12.5 There Are No Action Buttons on the Toolbar / in the Menu 48
12.6 I Can’t Attach EditDataAction to an Element 48
12.7 I Can’t Attach DeleteDataAction to an Element 48

13 TEST YOUR KNOWLEDGE .. 49

13.1 Task: Create an Application to Attach to Pages 49
13.2 Task: Attach a Message Box to Pages 49
13.3 Task: Attach the Application to Its Own Perspective 49
13.4 Task: Retrieve Data Elements from a Data Type 49
13.5 Task: Group Data Elements 49
13.6 Task: Sort Data Elements 49
13.7 Task: Filter Data Elements 50
13.8 Task: Attach Data Actions to Elements 50
13.9 Task: Open an ASPX Page 50
13.10 Task: Execute a CMS Function 50

Page 4 of 50 A Guide to Console Applications

1 Introduction

Being a highly customizable content management system, C1 CMS allows you to change
the way you work with it in the Administrative console.

By using the XML-based Tree Definition feature, you can customize the structure, content
and commands in the CMS Console’s tree structure by defining your own console
applications via XML documents.

Each application can vary from simply attaching a custom command to an existing element
in the tree structure (for example, a page in the Content perspective) to creating complex
tree structures in a custom perspective by combining and grouping multiple data types and
attaching various commands to the tree elements at will.

The tree structure can consist of “static” folders, data folders and grouping folders, which
empowers XML-oriented developers to build trees in the CMS Console exactly to their liking.

Generic data commands (add, edit, delete) can be attached to tree elements as well as one
can invoke one's own ASP.NET, XSLT Functions or "advanced" Workflow Foundation-
based UIs to get customized editors up and running.

These features are available to you:

• Using IntelliSense (XSD) and validation with verbose logging

• Using flat XML files in ~/App_Data/Composite/TreeDefinitions/

• Having the CMS Console automatically pick up on new files and changes

• Declaring what structure you want using nested XML elements

• Mixing elements of different types in one tree

• Defining simple elements, data elements or data element-driven grouping folders

• Attaching various commands to elements: add, edit, delete, custom workflow,
ASP.NET pages (with query string parameters) or XSLT Functions

• Using the CMS Function system to use or create advanced data filters

• Using customized editing forms where needed

• Sorting items as you desire

• Grouping by variable depth with date driven folders, reference fields, ranges etc.

You can watch these videos for an introduction to Tree Definitions in C1 CMS.

Tree Driven Applications - Part 1

Tree Driven Applications - Part 2

1.1 Who Should Read This Guide?

This guide is intended for developers experienced in XML. However, for the full experience
of creating console applications, you should be good at XSLT, ASP.NET, Workflow
Foundation.

1.2 Getting Started

To get started with console applications, you are supposed to take a number of steps.

Getting Started

Step Activity Chapter or section

1 Auto-attach an application How to Auto-Attach Applications

2 Allow manually attaching application How to Allow Attaching
Applications Manually

http://www.youtube.com/v/rptifybgF6M
http://www.youtube.com/v/i9Bs62WtoLg

Page 5 of 50 A Guide to Console Applications

3 Add simple elements Simple Elements

4 Add data elements Data Elements

5 Group elements with data folders How to Group Data Elements

6 Sort data elements How to Sort Data Elements

7 Filter data elements How to Filter Data Elements

8 Execute C1 CMS-specific data workflows How to Execute Standard Data
Workflows

9 Execute custom workflows How to Execute Custom
Workflows

10 Open ASPX pages How to Open ASPX Pages

11 Execute CMS functions How to Execute CMS Functions

12 Show message boxes How to Display Message Boxes

13 Show confirmation boxes How to Display Confirmation
Boxes

In the following few chapters, you will learn more about these and other activities.

1.3 Terms and Abbreviations

The following is the list of terms and their definitions used throughout this guide.

Terms and Definitions

Term Definition

Action An operation executed on an element or in general when users click
corresponding button on the toolbar or in the context menu

Attaching Relating an element (as a child element) or an action (as a context-
sensitive command) to an element in existing or custom tree
structures

CMS function An application logic encapsulated as code or markup for processing
and outputting data. Based on XSLT, C# or SQL.

Console application An application based on an XML Tree Definition intended to
customize the structure, content or commands available in the CMS
Console’s tree structures

Data elements An element that retrieves items from a specific CMS data type as child
elements within its parent element

Data item A single instance of structured data retrieved from a data type
displayed as a data element

Data folder An element that groups data elements or other data folders by a
specific field

Filtering Selecting and displaying data items that only match certain logical
condition

Page 6 of 50 A Guide to Console Applications

Grouping Distributing data items among several groups by a specific field or
condition

Simple element A single user-defined element in console applications, normally not
based on data items (data elements) of a specific data type

Sorting Listing data elements in a defined order by a specific field

Tree structure A hierarchy of elements in the CMS Console

Tree definition A definition of the tree structure of elements and actions attached to
these elements, which constitutes a console application and extends
or customize the CMS Console.

Workflow An encapsulated application logic for processing and outputting data.
Normally, based on Workflow Foundation

Page 7 of 50 A Guide to Console Applications

2 An Overview of Console Applications

Let’s start with a few scenarios that help illustrate the use of console applications in C1
CMS.

• Scenario 1: A custom action on tree elements in one of the C1 CMS perspectives.

By using a console application, you can attach a custom action to an element in the tree
structure in one of the perspective.

For example, you want to display the GUID of a selected page in the Content perspective.

The simplest way would be to have a message box pop up and show the GUID.

Figure 1: A custom action attached to a tree element

You can implement it by attaching the message box action to the IPage data type that
represents pages in C1 CMS. An additional button appears on the toolbar and in the context
menu when you select a page. When you click the button, the logic that gets the current
page’s GUID is implemented and the message box displays it to you.

<ElementStructure

xmlns="http://www.composite.net/ns/management/trees/treemarkup/1.0"

xmlns:f="http://www.composite.net/ns/function/1.0">

 <ElementStructure.AutoAttachments>

 <DataType Type="Composite.Data.Types.IPage" />

 </ElementStructure.AutoAttachments>

 <ElementRoot>

 <Actions>

 <MessageBoxAction Label="GUID"

MessageBoxTitle="${C1:Data:Composite.Data.Types.IPage:Title}"

MessageBoxMessage="${C1:Data:Composite.Data.Types.IPage:Id}"/>

 </Actions>

 </ElementRoot>

</ElementStructure>

Listing 1: Sample code: Attaching a custom action to an existing element

• Scenario 2: A custom tree in one of the perspectives

Page 8 of 50 A Guide to Console Applications

By using a console application, you can make a tree structure automatically appear in one
of the perspectives along with other existing tree structures.

For example, Composite C1 (now C1 CMS) version 1.3 or later exposes the functionality
called “Page Types”.

Figure 2: A custom tree in an existing perspective

The Page Types tree structure appears in the Layout perspective along with the Website
Templates tree structure. The user can use the Page Types application to effectively
manage the page types in C1 CMS.

For a code sample, open ~/App_Data/Composite/TreeDefinitions/PageType.xml

• Scenario 3: A custom tree in a custom perspective

By using a console application, you can make a tree structure automatically appear in a
custom perspective.

For example, by changing only one attribute in the above mentioned PageTypes.xml, you
can move the Page Types application from the Layout perspectives to its own Page Types
perspective.

Page 9 of 50 A Guide to Console Applications

Figure 3: A custom tree in its own perspective

Having an application in a separate perspective can be regarded as a specific case of
Scenario 2 where you application appears as a tree structure along with existing ones in
one of the perspectives.

• Scenario 4: A custom tree manually added to elements

By using a console application, you can allow users to attach a tree structure to existing tree
elements.

For example, you can allow users to manually attach the Blog application to a page in the
Content perspective.

Figure 4: A custom tree manually added to an element

As a result, users can start using the page as a blog page immediately. The Blog’s tree
structure contains all the elements and action needed to maintain the blog. It keeps track of

Page 10 of 50 A Guide to Console Applications

blog entries and comments to those entries and the user can add, edit or delete the blog
entries.

For a code sample, install the Blog add-on and open
~/App_Data/Composite/TreeDefinitions/Composite.Community.Blog.Entries.xml.

Please note that you can explore more add-ons that use tree definitions for sample markup.

2.1 A General Procedure of Creating Console Applicat ions

For you to have a bird’s eye view of how to create a console application, let’s have a look at
the major steps you should to take.

1. Create an XML file in \App_Data\Composite\TreeDefinitions.
2. Add the tree definition’s root element and specify the required namespaces.

<ElementStructure

xmlns="http://www.composite.net/ns/management/trees/treemarkup/1.0"

xmlns:f="http://www.composite.net/ns/function/1.0">

<!-- tree definition -->

</ElementStructure>

3. Define how and where the application must appear in the console.

<ElementStructure.AutoAttachments>

 <!-- required elements -->

</ElementStructure.AutoAttachments>

or

<ElementStructure.AllowedAttachments>

 <!-- required elements -->

</ElementStructure.AllowedAttachments>

4. Add the starting element of the tree structure:

<ElementRoot>

 <!-- elements of the tree structure -->

</ElementRoot>

5. Create a tree structure combining simple elements and data elements if necessary.

<Children>

 <Element>

 <Children>

 <DataElements>

 <!-- other nested elements if needed -->

 </DataElements>

 </Children>

 </Element>

</Children>

6. Group the elements by using data folder elements if necessary.

<DataFolderElements>

 <Children>

 <DataElements>

 <!-- other nested elements if needed -->

 </DataElements>

 </Children>

</DataFolderElements>

7. Sort the data elements if necessary.

http://docs.c1.orckestra.com/Composite.Community.Blog

Page 11 of 50 A Guide to Console Applications

<DataElements>

 <OrderBy>

 <Field />

 </OrderBy>

</DataElements>

8. Filter the data elements if necessary.

<DataElements>

 <Filters>

 <FieldFilter />

 </Filters>

</DataElements>

9. Attach actions to the tree elements if necessary.

<DataElements>

 <Actions>

 <EditDataAction />

 <WorkflowAction />

 <CustomUrlAction />

 <ReportFunctionAction />

 </Actions>

</DataElements>

2.2 Creating a Tree Definit ion File

As you can see in the steps above, you are supposed to create a tree definition file for your
console application in a specific folder on your website:
~\App_Data\Composite\TreeDefinitions.

You have two options here:

• Since the tree definition file is a file in XML format, you can create the file in your
favorite XML editor and upload it to the folder via the CMS Console.

• You can create the tree definition file in the required folder in the CMS Console
directly.

The first option makes more sense since many XML editors (for example, the built-in XML
Editor in Visual Studio 2010) can provide the developers with additional conveniences such
as IntelliSense and validation.

To upload the file to the TreeDefinitions folder:

1. Log into the CMS Console.
2. In the System perspective, expand \App_Data\Composite\TreeDefinitions.
3. Select TreeDefinitions.
4. Click Upload File on the toolbar.
5. In the Upload File window, click File Upload button, browse to, and select, the file,

and click Open.
6. Click OK.

Please note that if you have access to the web server’s file system (for example, via the
FTP), you can simply copy (upload) the file to the above mentioned folder.

To create the tree definition file in C1 CMS directly:

1. Log into the CMS Console.
2. In the System perspective, expand \App_Data\Composite\TreeDefinitions.
3. Select TreeDefinitions.
4. Click New File on the toolbar.
5. In the Add New File window, type the name of your application and add the “.xml”

extension: e.g. “MyApplication.xml”

Page 12 of 50 A Guide to Console Applications

6. Click OK. The file will open in the right view.
7. Add the content to the file and save it.

Please note that once the tree definition file has been placed in the TreeDefinitions folder,
C1 CMS picks it up automatically and displays in the console whatever it defines.

2.2.1 Schema Def in i t ion F i le

The console application’s XML schema is defined in a standard schema definition file:

~\Composite\schemas\Trees\Tree.xsd

You can link to the XSD file to your XML tree definition file in Visual Studio 2010 and start
using IntelliSense and validation when creating your console applications.

Figure 5: Using IntelliSense

2.3 A Quick Overview of a Tree Definit ion

The following figure illustrates the sample structure of the tree definition file.

Page 13 of 50 A Guide to Console Applications

Figure 6: Sample Structure of a tree definition

As you can see from the figure above, the file structure has two main parts: the type of
attachment (1) and the tree structure (2).

The tree structure consists of elements. The elements may have child elements (4) and
actions (3). The data elements (one of the three element types) can also include sorting and
filtering elements (5).

2.3.1 Root Element and Namespaces

You always start your tree definition file with the root ElementStructure element. This
element must have two required namespaces specified:

• xmlns=http://www.composite.net/ns/management/trees/treemarkup/1.0

• xmlns:f=http://www.composite.net/ns/function/1.0

The first namespace defines all the elements of a console application. The second
namespace is a standard namespace used to define CMS functions. Some elements in
console applications make use of CMS functions. That is why the function’s namespace
must be mentioned, too.

<ElementStructure

xmlns="http://www.composite.net/ns/management/trees/treemarkup/1.0"

xmlns:f="http://www.composite.net/ns/function/1.0">

</ElementStructure>

Listing 2: ElementStructure

The ElementStructure element normally includes:

Page 14 of 50 A Guide to Console Applications

• one of the two application attachment elements: ElementStructure.AutoAttachments
or ElementStructure.AllowedAttachments

• and the required starting element of the tree structure: ElementRoot

Page 15 of 50 A Guide to Console Applications

3 How to Attach Console Applications

Console applications can vary from a single action attached to an element in an existing tree
structure such as a page to a stand-alone highly-hierarchical tree structure of elements with
attached actions.

To have the application appear in the console GUI, you should always specify:

• Where the application should be attached

• How the application should be attached

A console application can be attached to:

• An existing element of a specific type (for example, a page)

• A root (normally implicit) of an existing perspective (for example, “Content”)

• A root of its own perspective

The application can appear in all these points of attachment:

• Automatically

• Only when attached manually by the user

Normally attaching an application manually is relevant only for existing elements of specific
types. In this case, the element gets two new actions on its context menu:

• “Add application”

• “Remove application”

Figure 7: Attaching applications via the context menu

The user can thus add (attach) and remove (detach) an application. The manual attachment
is regarded as “allowed”.

Page 16 of 50 A Guide to Console Applications

Figure 8: Selecting an application to attach

Based on the way you intend your application to appear in the console, you should specify
whether you want to:

• auto-attach an application

• allow users to attach application manually

When that decided, you should proceed to select where you want your application to
appear.

3.1 How to Auto-Attach Applications

The application can automatically appear as a tree structure in one of the perspectives or in
its own new perspective. This type of application is regarded as an “Auto Attachment”. For
example, the Page Types application appears in the Layout perspective automatically.

Page 17 of 50 A Guide to Console Applications

Figure 9: Auto-attached application

To auto-attach an application in a perspective:

1. Add the ElementStructure.AutoAttachments element within the ElementStructure
element.

2. Add the NamedParent element within the ElementStructure.AutoAttachments
element.

3. Set its required attribute:

• Name: The name of the perspective to attach the application in.

If necessary, set its optional attribute:

• Position: The position in the tree structure the application should appear at

<ElementStructure.AutoAttachments>

 <NamedParent Name="Layout" Position="Top" />

</ElementStructure.AutoAttachments>

Listing 3: Auto-attaching the application in Layout

Please note that the application can only appear in one perspective.

Normally, you can select one of the existing perspectives here. However, you have two
more options:

• You can have the application appear below the Website Items in the Content
perspective (“Content.WebsiteItems”)

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ElementStructureAutoAttachments
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/NamedParent

Page 18 of 50 A Guide to Console Applications

• You can have the application appear in its own perspective (“PerspectivesRoot”).

Please note that to make the new perspective available in the Administrative console, you
should grant access to this perspective to proper users or user groups.

You may as well auto-attach the application to an existing element (for example, a page):

1. Add the ElementStructure.AutoAttachments element within the ElementStructure
element.

2. Add the DataType element within the ElementStructure.AutoAttachments element.
3. Set its required attribute:

• Type: The data type, the items of which the application will be attached to

If necessary, set its optional attribute:

• Position: The position in the tree structure the application will appear at

<ElementStructure.AutoAttachments>

 <DataType Type="Composite.Data.Types.IPage" Position="Top" />

</ElementStructure.AutoAttachments>

Listing 4: Auto-attaching the application to an element of a specific data type

Please note that you can attach the application to multiple data types.

<ElementStructure.AutoAttachments>

 <DataType Type="Composite.Data.Types.IPage" Position="Top" />

 <DataType Type="Composite.Data.Types.IPageTypes" Position="Bottom" />

</ElementStructure.AutoAttachments>

Listing 5: Auto-attaching to elements of multiple types

3.2 How to Allow Attaching Applicat ions Manually

You can have users manually add the application to an existing element (for example, a
page or a data item). The application will thus appear as a child element. This type of
application is regarded as an “Allowed Attachment”.

Figure 10: Manually attached application

Two new actions (“Add application” and “Remove application”) appear in the element’s
context menu, which enable users to add or remove this application at will.

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ElementStructureAutoAttachments
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataType

Page 19 of 50 A Guide to Console Applications

Figure 11: Menu commands to attach applications

To allow users to attach an application manually:

1. Add the ElementStructure.AllowedAttachments element within the ElementStructure
element.

2. Set its required attribute:

• ApplicationName: The name of the application to refer to when adding or
removing it

3. Add the DataType element within the ElementStructure.AllowedAttachments
element.

4. Set its required attribute:

• Type: The data type, the items of which the application is allowed to be
attached to

If necessary, set its optional attribute:

• Position: The position in the tree structure the application will appear at

<ElementStructure.AllowedAttachments ApplicationName="Blog">

 <DataType Type="Composite.Data.Types.IPage" Position="Bottom" />

</ElementStructure.AllowedAttachments>

Listing 6: Allowing manually attaching the application

You can add as many data types as you need.

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ElementStructureAllowedAttachments
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataType

Page 20 of 50 A Guide to Console Applications

4 How to Attach Elements to Tree Structures

Creating a console application implies creating a tree-like structure of elements.

The elements often are retrieved as data items from a specific data type. And you can
group, sort and filter them.

You can also create your own elements not based on data types. You can use these simple
custom elements as, for example, parents for data type based items or data folders.

Besides you can nest elements within elements thus creating quite a hierarchy of them.

Figure 12: A hierarchy of elements in an application

The tree structure always starts with the tree’s root element – ElementRoot. This element is
required and can contain the Children and Actions elements. (You will learn more about
Actions in How to Attach Actions to Tree Elements.)

<ElementRoot>

 <Children>

 <!-- child elements if needed -->

 </Children>

 <Actions>

 <!-- action elements if needed -->

 </Actions>

</ElementRoot>

Listing 7: Children and Actions are child elements of ElementRoot

Please note that ElementRoot is only the root of the application tree structure and is
different from the application root - ElementStructure. The ElementStructure element
contains the ElementRoot element.

Please also note that you should always use the Children element when you nest elements
in other elements.

<!-- parent element: start tag -->

 <Children>

 <!-- child element -->

 </Children>

<!-- parent element: end tag -->

Listing 8: Using Children when nesting elements

The child elements appear in the GUI as children of elements which the application is
attached to.

You can use 3 kinds of elements when creating a tree structure:

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ElementRoot
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Children
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Actions
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ElementStructureAllowedAttachments

Page 21 of 50 A Guide to Console Applications

• Simple elements

• Data elements

• Data folder elements

In this chapter, you will learn to create and use simple elements and data elements. Data
folder elements used to group data items are covered in How to Group Data Elements.

4.1 Simple Elements

A simple element stands for a single item in a tree structure. Normally it is not data type
based. This element may serve as a container (parent) for other elements such as data
elements or data folder elements.

Figure 13: Simple elements

(A good practice is to have at least one simple element contained in ElementRoot.)

To add a simple element to a tree structure, you should use an Element element:

1. Locate an element to serve as a parent.
2. Add a Children element within this parent element.
3. Add an Element element within the Children element.
4. Specify its required attributes:

• Id: A unique string in the tree to identify the element

• Label: The label of the element

If necessary, specify its optional attributes:

• ToolTip: The tooltip of the element

• BrowserUrl: A custom URL for the element to show in the C1 Console browser
when the element is focused

• Icon: The icon of the element when collapsed (closed)

• OpenedIcon: The icon of the element when expanded (opened)

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Children
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ElementStructureAllowedAttachments

Page 22 of 50 A Guide to Console Applications

<ElementRoot>

 <Children>

 <Element

 Id="TasksRoot"

 Label="Tasks"

 ToolTip="Tasks"

 BrowserUrl="http://c1.orckestra.com"

 Icon="pagetype-pagetype-rootfolder"

 OpenedIcon="pagetype-pagetype-rootfolder-open">

 </Element>

 </Children>

</ElementRoot>

Listing 9: Using Element

You can add as many Element elements as you need.

Please note that you cannot add an Element element within a DataFolderElements element.

4.2 Data Elements

Data elements stand for data items from a specific data type. Data items retrieved as data
elements can be grouped, sorted and filtered.

Figure 14: Data elements

It is a good practice to nest data elements within a container-like element such as a simple
element (Element) or data folder elements (DataFolderElements).

To add data elements to a tree structure, you should use a DataElements element:

1. Locate an element to serve as a parent.
2. Add a Children element within this parent element.
3. Add a DataElements element within the Children element.
4. Specify its required attribute:

• Type: The data interface type name

If necessary, specify its optional attributes:

• Label: A custom label for each data item

• ToolTip: A custom tooltip for each data item

• ShowForeignItems: When set to “true”, data items not yet localized are
displayed with a “Localize” action

• Display: A mode in which an element that might have child elements is
displayed (Auto, Lazy, Compact)

• BrowserUrl: A custom URL for the element to show in the C1 Console browser
when the element is focused

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ElementStructureAllowedAttachments
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataFolderElements
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Children
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataElements

Page 23 of 50 A Guide to Console Applications

• Icon: The icon of the element when collapsed (closed)

• OpenedIcon: The icon of the element when expanded (open)

<DataElements

 Type="Composite.Community.Blog.Entries"

 Label="${C1:Data:Composite.Community.Blog.Entries:Title}"

 Display="Auto">

</DataElements>

Listing 10: Using DataElements

4.3 How to Use Values from Data Type Fields

When you retrieve items from a data type, you are likely to need the values of the data
type’s specific fields, different for each item (for example, for the Label attribute of
DataElements).

Use the following model to get a value from a data type field:

${C1:Data:DataType:Field}

replacing “DataType” with the full name of the data type (including namespaces) and “Field”
- with the name of the field.

For fields of type DateTime, decimal and int you can expand the model with formatting
options, like this:

${C1:Data:DataType:Field:Format}

Format options are identical to those available for .NET .ToString() for the given type – for
example “MMM d, yyyy” for DateTime fields and “C” for decimal and int.

For example,

${C1:Data:Composite.Community.Blog.Entries:Title}

${C1:Data:Composite.Community.Blog.Entries:Date:MMM d, yyyy}

In the same manner, you can pass a specific value to custom commands you can attach to
tree elements (e.g. a CMS function).

4.4 How to Use Localized Strings

If you want your application to match the language of the console GUI, consider use
localized strings in its definition file.

While a hard-coded string read “Add Task”, the localized string will read “${TasksApp,
AddTaskButtonLabel}”.

Here “TaskApp” stands for the name of a specific localization file without the
culture/language code suffix and extension (e.g. “TaskApp.en-us.xml”) and
“AddTaskButtonLabel” is the name of the string with the right text:

<string key="AddTaskButtonLabel" name="Add Task" />

In most cases, you will localize the GUI elements such as button labels and tree element
labels, which is why you need to use this approach.

Please note that you have to register localization files used by your application in
~\App_Data\Composite\Composite.config to start using this approach.

Please refer Localizing Strings in Newsletter as a model for your localization.

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataElements#_Label_1
http://c1.orckestra.com/Add-ons/All/Composite.Community.Newsletter/UserManual/Newsletter-Developer-Guide/Localizing-Newsletter

Page 24 of 50 A Guide to Console Applications

4.5 How to Display Elements in Custom Perspectives

If you want your application to appear in a custom perspective, make sure you have
followed these 3 major steps:

1. Attach the application to the perspectives’ root.
2. Use a simple element as the root of the tree of elements to provide the name for the

perspective.
3. Grant access to the new perspective to required users and/or user groups.

First of all:

1. Add the ElementStructure.AutoAttachments element within the ElementStructure
element.

2. Add the NamedParent element within the ElementStructure.AutoAttachments
element.

3. Set its Name attribute to “PerspectivesRoot” and, if necessary, set its Position
attribute.

<ElementStructure.AutoAttachments>

 <NamedParent Name="PerspectivesRoot" Position="Top" />

</ElementStructure.AutoAttachments>

Listing 11: Auto-attaching the application in its own perspective

 (See “How to Auto-Attach Applications” for more information.)

Next:

1. Add a Children element within the ElementRoot element, and then an Element
element within this Children element.

2. Specify its Id and Label attributes. Please note that the Label’s value will serve as
the name of the new perspective.

<ElementRoot>

 <Children>

 <Element Id="TasksRoot" Label="Tasks">

 </Element>

 </Children>

</ElementRoot>

Listing 12: Using Element to provide a name for the new perspective

(See “Simple Elements” for more information.)

Finally:

1. In the Users perspective, edit the user and/or user group you want to grant access
to the new perspective.

2. Check the new perspective in the list of perspectives. (For a user, see the
Perspectives tab; for a user group, see the Perspectives group box.)

3. Save the changes.
4. Reload the Administrative console (F5).

(See “Security” for more information.)

The perspective should appear in the console.

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ElementStructureAutoAttachments
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/NamedParent
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Children
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ElementStructureAutoAttachments
http://users.c1.orckestra.com/Security

Page 25 of 50 A Guide to Console Applications

4.6 How to Group Mult iple Tree Definit ions in One
Perspective

In Composite C1 (now C1 CMS) version 3.2 or later, you can display multiple console
applications, each defined in its own tree definition file, in the same perspective, new or
existing (as a subfolder).

Let’s assume that you have five related tree definition files that you want to show in your
own perspectives. Using one custom perspective for each tree definition would clutter the
navigation pane in C1 CMS.

It makes sense to create a single custom perspective and display these tree definitions in it.
One way is to merge all five tree definitions into one big tree definition file. However, it would
be hard to maintain the markup in this way.

A better approach is to group all the five tree definitions in one perspective.

Figure 15: Several tree definitions grouped in one custom perspective

It can be a custom perspective or an existing one. In the latter case, the tree definitions will
be grouped under one subfolder.

Page 26 of 50 A Guide to Console Applications

Figure 16: Several tree definitions grouped in one existing perspective

To group tree definitions in this manner, in each tree definition file:

1. Add and set the ShareRootElementById attribute to “true” on the ElementRoot
element.

2. Set the Id attribute on the “root” Element element to the same value.

(Here the “root” Element element stands for the child of the ElementRoot element.)

Now C1 CMS will put in the same perspective all the trees that use the
ShareRootElementById=”true” and the same Id in their “root” element.

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ElementRoot
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ElementRoot
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ElementRoot
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ElementRoot

Page 27 of 50 A Guide to Console Applications

<ElementStructure

xmlns="http://www.composite.net/ns/management/trees/treemarkup/1.0"

xmlns:f="http://www.composite.net/ns/function/1.0">

 <ElementStructure.AutoAttachments>

 <NamedParent Name="PerspectivesRoot" Position="Top" />

 </ElementStructure.AutoAttachments>

 <ElementRoot ShareRootElementById="true">

 <Children>

 <Element Label="Shared Trees" Id="SharedTreesId">

 <Children>

 <Element Label="Tree Definition 1" Id="Tree1Id">

 <Children>

 <!-- data elements etc -->

 </Children>

 </Element>

 </Children>

 </Element>

 </Children>

 </ElementRoot>

</ElementStructure>

Listing 13: A tree to appear in a custom perspective (“Shared Trees”)

Not only can you display trees in a new perspective but also in one of the existing
perspectives, for example, “Content”.

<ElementStructure

xmlns="http://www.composite.net/ns/management/trees/treemarkup/1.0"

xmlns:f="http://www.composite.net/ns/function/1.0">

 <ElementStructure.AutoAttachments>

 <NamedParent Name="Content" Position="Top" />

 </ElementStructure.AutoAttachments>

 <ElementRoot ShareRootElementById="true">

 <Children>

 <Element Label="Shared Trees" Id="SharedTreesId">

 <Children>

 <Element Label="Tree Definition 1" Id="Tree1Id">

 <Children>

 <!-- data elements etc -->

 </Children>

 </Element>

 </Children>

 </Element>

 </Children>

 </ElementRoot>

</ElementStructure>

Listing 14: A tree to appear in an existing perspective (“Content”)

Use the standard procedures for adding elements to existing perspectives or custom
perspectives when defining your trees.

Please note that it only works for trees that have a single “root” Element element (e.g.
<Element Label="My Perspective" Id="ItemsRoot">). If you have multiple “root” Elements,
the tree will not be grouped.

A good practice is two display tree elements under two nested Element elements. The first
one provides a custom perspective with the label, tooltip and icons, or serves as the
common subfolder in an existing perspective. The second one serves as a root for the tree
elements from one tree definition.

Page 28 of 50 A Guide to Console Applications

 <ElementRoot ShareRootElementById="true">

 <Children>

 <Element Label="Shared Trees" Id="SharedTreesId">

 <Children>

 <Element Label="Tree Definition 1" Id="Tree1Id">

 <Children>

 <!-- data elements etc -->

 </Children>

 </Element>

 </Children>

 </Element>

 </Children>

 </ElementRoot>

Listing 15: Using nested Element elements in grouped tree definitions

Figure 17: Nested Element elements in the CMS Console

Please note that the first loaded tree within the same group is the one that decides the label,
tooltip and icon of the new perspective or the subfolder in the existing perspective. The
elements of the root child of all trees in the same group are displayed under the new
perspective/folder in load order.

Changing the perspective in the first loaded tree definition will change it for all other tree
definitions in the same group even though they have other perspectives explicitly defined in
the NamedParent element. Changing the perspective in any of the tree definitions not
loaded first will have no such effect.

4.7 How to Display Custom URLs in the C1 Console for
Elements

You can show some specific content in the C1 Console browser for an element when this
element is selected (focused) in the tree.

To do so, use the BrowserUrl attribute on the elements that support this feature:

• Element

• DataElements

You can also use “${C1:Data:[TypeName]:[FieldName]}” in the URL to get a field value of a
parent (or self) data element.

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/NamedParent
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ElementRoot
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataElements
http://docs.c1.orckestra.com/Console/Guide-to-Applications/How-to-Attach-Elements-to-Tree-Structures#_How_to_Use_1

Page 29 of 50 A Guide to Console Applications

<ElementStructure

xmlns="http://www.composite.net/ns/management/trees/treemarkup/1.0"

xmlns:f="http://www.composite.net/ns/function/1.0">

 <ElementStructure.AutoAttachments>

 <NamedParent Name="Content" Position="Bottom" />

 </ElementStructure.AutoAttachments>

 <ElementRoot>

 <Children>

 <Element Label="Click me for the C1 website" Id="c1-website"

Icon="cloud" BrowserUrl="http://c1.orckestra.com/" />

 <DataElements Type="Composite.Data.Types.IPageType" Icon="pagetype-

pagetype"

BrowserUrl="https://www.bing.com/search?q=${C1:Data:Composite.Data.Types.IP

ageType:Name}" />

 </Children>

 </ElementRoot>

</ElementStructure>

Listing 16: Using the BrowserUrl attribute on Element and DataElements elements

Page 30 of 50 A Guide to Console Applications

5 How to Group Data Elements

In C1 CMS, you can group data items by one or more fields provided that some of the data
items share the same values in those fields. Data folder elements allow you to group data
elements in your console applications.

Figure 18: Data folder elements

Grouping can be hierarchical if you use more than one field to group by. (Read more on
grouping data items in Field Grouping and Creating Datatypes That Reference Other
DataTypes)

Normally, data folder elements of a specific type should contain data elements
(DataElements) of the same type. The data folder elements can also contain other data
folder elements of the same type. In this case, the top data folder elements must be
distinguished from their child data folders because they might have different attributes to
set.

To group data elements, you should use a DataFolderElements element:

1. Locate an element to serve as a parent.
2. Add a Children element within this parent element.
3. Add a DataFolderElements element within the Children element.
4. Specify its required attribute:

• Type: The data interface type name

• FieldGroupingName: The field name of the given data interface (property name)
to group by

If necessary, specify its optional attributes:

• DateFormat: Date format used when grouping

• Range: Ranges for grouping data folders

• FirstLetterOnly: When set to “true” the grouping is done with the first letter only

• Display: A mode in which an element that might have child elements is
displayed

• Icon: The icon of the element

• SortDirection: The sorting direction (Note: Composite C1 (now C1 CMS) 4.0 or
later.)

<DataFolderElements

 Type="Composite.Community.Blog.Entries"

 DateFormat="yyyy MMMM"

 FieldGroupingName="Date"

 Display="Compact">

</DataFolderElements>

Listing 17: Using DataFolderElements

To have a child data folder within the above parent data folder:

http://docs.c1.orckestra.com/Data/Customizing-Datatypes/Creating-Data-Types-That-Reference-Other-Data-Types
http://docs.c1.orckestra.com/Data/Customizing-Datatypes/Creating-Data-Types-That-Reference-Other-Data-Types
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Children
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataFolderElements

Page 31 of 50 A Guide to Console Applications

5. Add a Children element within the DataFolderElements element.
6. Add another DataFolderElements element within the Children element.
7. Specify its required attribute:

• FieldGroupingName: The field name of the given data interface (property name)
to group by

If necessary, specify its optional attributes:

• DateFormat: Date format used when grouping

• Range: Ranges for grouping data folders

• FirstLetterOnly: When set to “true” the grouping is done with the first letter only

• Display: A mode in which an element that might have child elements is
displayed

• Icon: The icon of the element

• ShowForeignItems: When set to “true”, data folder items not yet localized are
displayed with a “Localize” action

• SortDirection: The sorting direction (Note: Composite C1 (now C1 CMS) 4.0 or
later.)

Please note that for child data folders within a parent data folder you do not need to specify
the Type attribute again. However, you can specify the ShowForeignItems attribute
(unavailable for the parent data folder.)

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Children
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataFolderElements
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataFolderElements

Page 32 of 50 A Guide to Console Applications

6 How to Sort Data Elements

You can sort data elements in the ascending or descending order. For this, you need to
specify the field to order the elements by and, optionally, the order (direction). The
ascending order is assumed when none is specified.

Please note that only data elements (elements of the DataElements type) can be sorted.
Simple elements and data folder elements cannot be sorted.

To sort data elements:

1. Locate a DataElements element you want to sort in a specific order.
2. Add an OrderBy element within the element.
3. Add the Field element within the OrderBy element.
4. Specify its required attribute:

• FieldName: The name of the field used to order data elements by

If necessary, specify its optional attribute:

• Direction: The order to sort data elements by

 <OrderBy>

 <Field FieldName="Date" Direction="descending"></Field>

 </OrderBy>

Listing 18: Sorting by Date in Descending order

Please note that the DataElements element can only contain one OrderBy element. The
OrderBy element can contain as many Fields elements as you need.

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataElements
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/OrderBy
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Field

Page 33 of 50 A Guide to Console Applications

7 How to Filter Data Elements

When you use data elements in your tree structures, all existing data elements are
displayed. However, you can also display specific elements selectively by filtering them.

To apply a filter on data elements, you should use a Filters element that contains a specific
filter. You can use the following filters:

• Parent ID filter

• Field filter

• Function filter

Please note that you can only apply filters to data elements (DataElements). Please also
note that you can only use one Filters element within a DataElements element.

7.1 How to Fi lter Data Elements by Parent ID

The Parent ID filter allows you to select elements that share the same parent entity.

For example, if you keep comments to pages in one data type, it makes sense to only
display comments relevant to a specific page. In these relations, a page serves as a specific
parent entity to a number of comments and they can thus be selected by the ID of their
parent (page).

To filter data elements by their parent’s ID, you should use a ParentIdFilter element:

1. Locate a DataElements element you want to apply the filter to.
2. Add a Filters element within the DataElements element.
3. Add a ParentIdFilter element within the Filters element.
4. Set its required attributes:

• ParentType: The type of the parent element (data type) to filter on

• ReferenceFieldName: The name of the field that is the reference to the parent
type

 <Filters>

 <ParentIdFilter ParentType="Composite.Data.Types.IPage"

ReferenceFieldName="PageId" />

 </Filters>

Listing 19: Filtering data elements by parent ID

Please note that a Filters element can only contain one ParentIdFilter element.

7.2 How to Fi lter Data Elements by Field

The Field filter allows you to select data elements if a field given contains a value that
matches a specific value or a range of values.

To filter data elements by field, you should use a FieldFilter element:

1. Locate a DataElements element you want to apply the filter to.
2. Add a Filters element within the DataElements element.
3. Add a FieldFilter element within the Filters element.
4. Set its required attributes:

• FieldName: The name of the field to filter on

• FieldValue: The value of the field for which the elements will be shown

If necessary, set its optional attribute:

• Operator: The relation between the field and the value to select elements when
filtered if they match

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Filters
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataElements
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataElements
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Filters
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ParentIdFilter
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataElements
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Filters
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/FieldFilter

Page 34 of 50 A Guide to Console Applications

<Filters>

 <FieldFilter FieldName="Done" FieldValue="False"/>

</Filters>

Listing 20: Filtering data elements by field

Please note that a Filters element can contain as many FieldFilter elements as you need.

7.3 How to Fi lter Data Elements with CMS Functions

The Function filter allows you to use a CMS function to filter data elements. In this case, it is
the function that sets the filtering rules and is quite transparent to the Function filter that
uses it.

To filter data elements with a CMS function, you should use a FunctionFilter element:

1. Locate a DataElements element you want to apply the filter to.
2. Add a Filters element within the DataElements element.
3. Add a FunctionFilter element within the Filters element.
4. Add a f:function element within the FunctionFilter element.
5. Set its required attributes:

• name: The name of the CMS function

If the function requires so:

6. Add one or more f:param elements within the f:function element.
7. Set its required attribute:

• name: The name of the CMS function’s parameter

If necessary, set its optional attribute:

• value: The value of the CMS function’s parameter

<Filters>

 <FunctionFilter>

 <f:function name="UpcomingEventsFilter"

 xmlns:f="http://www.composite.net/ns/function/1.0">

 <f:param name="IncludeToday" value="true" />

 </f:function>

 </FunctionFilter>

</Filters>

Listing 21: Filtering data elements with a CMS function

(The CMS function schema is defined in a separate schema definition file located at:

~/Composite/schemas/Functions/Functions.xsd)

The Filters element can contain as many FunctionFilter elements as you need.

Please note that a CMS function can contain another CMS function.

Please also note that the filter function’s parameters can be assigned dynamic field values
(see the example below).

7.3.1 Example of Creat ing and Using a F i l ter Funct ion

Let’s assume that we have two datatypes: Demo.ParentType and Demo.ChildType. Both
datatypes have the “Title” field of the String type. Besides, Demo.ChildType has the String
field named “ParentIdList” which uses the DataIdMultiSelector widget referring to
Demo.ParentType as its source datatype.

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataElements
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Filters
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/FunctionFilter
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ffunction
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/fparam

Page 35 of 50 A Guide to Console Applications

By using the DataIdMultiSelector, Demo.ChildType can have multiple parents.

When we build a tree of parent data elements of the Demo.ParentType type which nest
elements of the Demo.ChildType type, we need to filter the child elements by their multiple
parent items.

ParentIdFilter can only filter by one parent ID. And this is where FunctionFilter come in
handy.

First we create a C# function that can filter Demo.ChildType by multiple parent IDs:

public static Expression<Func<Demo.ChildType, bool>> IdListFilter(Guid

ParentId)

{

 Expression<Func<Demo.ChildType, bool>> filter = f =>

f.ParentIdList.Contains(ParentId.ToString());

 return filter;

}

Listing 22: An example of a filter function

Then we use the function in our tree definition passing to its ParentId parameter a dynamic
field value:

<DataElements Type="Demo.ParentType"

Label="${C1:Data:Demo.ParentType:Title}">

 <Children>

 <DataElements Type="Demo.ChildType"

Label="${C1:Data:Demo.ChildType:Title}">

 <Filters>

 <FunctionFilter>

 <f:function name="Demo.IdListFilter"

xmlns:f="http://www.composite.net/ns/function/1.0">

 <f:param name="ParentId"

value="${C1:Data:Demo.ParentType:Id}"/>

 </f:function>

 </FunctionFilter>

 </Filters>

 </DataElements>

 </Children>

</DataElements>

Listing 23: An example of using a filter function

Page 36 of 50 A Guide to Console Applications

8 How to Attach Actions to Tree Elements

You can add one or more actions to elements in tree structures. It includes both the existing
tree structures (for example, the hierarchy of pages in the Content perspective) and custom
tree structures (you create as part of your console application).

You can add actions to Element, DataElements and DataFolderElements elements as well
as ElementRoot.

Normally, attaching actions to the ElementRoot is used with auto-attached applications as
the way of adding custom actions to existing elements (for example, pages). The application
is auto-attached to a specific data type rather than forms a tree structure of its own. Other
uses of attaching actions to ElementRoot are not normally applicable.

Please note that you should always add actions to elements within an Actions element.

<!-- parent element: start tag -->

 <Actions>

 <!-- action 1 -->

 <!-- action 2 -->

 </Actions>

<!-- parent element: end tag -->

Listing 24: Using Actions when attaching actions to elements

The Actions element can contain:

• AddDataAction

• WorkflowAction

• CustomUrlAction

• ReportFunctionAction

• MessageBoxAction

• ConfirmAction

As a child element of DataElements and DataFolderElements, it can additionally contain:

• EditDataAction

• DeleteDataAction

The latter means that only the DataElements and DataFolderElement allow the edit and
delete operations on its elements.

Logically, the actions can be divided into three major groups:

• The first group includes actions that execute standard C1 CMS specific data
workflows such as adding, editing and deleting a data item.

• The second group consists of actions that execute custom commands in your
console application. For such commands, you can use a custom workflow, a custom
CMS function and a custom ASPX page.

• The third group comprises actions that display two types of dialog boxes such as
message boxes and confirmation boxes.

In the following few chapters, you will learn more about the actions in each of these groups.

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Element
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataElements
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataFolderElements
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ElementRoot
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Actions
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/AddDataAction
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/WorkflowAction
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/CustomUrlAction
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ReportFunctionAction
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/MessageBoxAction
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ConfirmAction
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/EditDataAction
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DeleteDataAction

Page 37 of 50 A Guide to Console Applications

9 How to Execute Standard Data Workflows

When you work with data in C1 CMS, you use its standard data workflows. These data
workflows allow you to add, edit or delete data items.

When you add or edit a data item, a data editing form opens specific to the data type in
question. You can however customize the form in many cases by editing its form markup.

If you use data elements of a specific type in your console application, you can use these
standard C1 CMS-specific data workflows to manage the data items.

Three actions are available for executing the standard data workflows:

• AddDataAction

• EditDataAction

• DeleteDataAction

Please note that EditDataAction and DeleteDataAction can be only used with DataElements
and DataFolderElements.

9.1 How to Add Data

When you want to add a child element to a tree element in C1 CMS (for example, a sub
page to a page, or a data item to a data type), you use its standard Add Data workflow.
Normally, you select the parent element and click Add on the toolbar or in the context menu.

Figure 19: Standard Add Data action

It opens a specific “Add Data” form.

When added, the new item appears as a child element under the parent element.

To attach the Add Data workflow to an element, you should use an AddDataAction element:

1. Locate an element you want to attach the action to.
2. Add an Actions element within the element if necessary.
3. Add an AddDataAction element within the Actions element.
4. Set the required attribute:

• Type: The data type to add an item to

If necessary, set its optional attributes:

• Label: A custom label of the action

• Tooltip: A custom tooltip of the action

• Icon: The icon of the action that appears on the toolbar and in the context menu

• CustomFormMarkupPath: The path to an alternate Form UI XML file

<Element Label="Blog Entries" Id="Root">

 <Actions>

 <AddDataAction

 Label="Add Blog Entry"

 Type="Composite.Community.Blog.Entries"/>

 </Actions>

</Element>

Listing 25: Attaching an Add Data action

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataElements
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataFolderElements
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Actions
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/AddDataAction

Page 38 of 50 A Guide to Console Applications

Please note that the type you specify in the Type attribute (Step 4) must match that of the
child elements contained in the parent element.

9.2 How to Edit Data

When you want to edit a tree element in C1 CMS (for example, a page, a datatype, or a
data item), you use its standard Edit Data workflow. Normally, you select the element and
click Edit on the toolbar or in the context menu.

Figure 20: Standard Edit Data action

It opens an “Edit Data” form.

To attach the Edit Data workflow to a tree element, you should use an EditDataAction
element:

1. Locate an element you want to attach the action to.
2. Add an Actions element within the element if necessary.
3. Add an EditDataAction element within the Actions element.

If necessary, set its optional attributes:

• Label: A custom label of the action

• Tooltip: A custom tooltip of the action

• Icon: The icon of the action that appears on the toolbar and in the context menu

• CustomFormMarkupPath: The path to an alternate Form UI XML file

<DataElements Type="Composite.Community.Blog.Entries"

Label="${C1:Data:Composite.Community.Blog.Entries:Title}" Display="Auto">

 <Actions>

 <EditDataAction

 Label="Edit Blog Entry" />

 </Actions>

</DataElements>

Listing 26: Attaching an Edit Data action

Please note that the EditDataAction is only available for DataElements and
DataFolderElements.

9.3 How to Delete Data

When you want to delete a tree element in C1 CMS (for example, a page, or a data item),
you use its standard Delete Data workflow. Normally, you select the element and click
Delete on the toolbar or in the context menu.

Figure 21: Standard Delete Data action

To attach the Delete Data workflow to a tree element, you should use a DeleteDataAction
element:

1. Locate an element you want to attach the action to.

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Actions
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/EditDataAction
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataElements
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataFolderElements

Page 39 of 50 A Guide to Console Applications

2. Add an Actions element within the element if necessary.
3. Add a DeleteDataAction element within the Actions element.

If necessary, set its optional attributes:

• Label: A custom label of the action

• Tooltip: A custom tooltip of the action

• Icon: The icon of the action that appears on the toolbar and in the context menu

<DataElements Type="Composite.Community.Blog.Entries"

Label="${C1:Data:Composite.Community.Blog.Entries:Title}" Display="Auto">

 <Actions>

 <DeleteDataAction

 Label="Delete Blog Entry" />

 </Actions>

</DataElements>

Listing 27: Attaching a Delete Data action

Please note that the DeleteDataAction is only available for DataElements and
DataFolderElements.

9.4 How to Use Custom Forms

When you use AddDataAction and EditDataAction, C1 CMS displays default editor forms.

Along with editing the Form Markup as described in Editing Form Markup (An Advanced
Guide to Data Types) to customize the default forms, you can create your own forms and
use them with these actions instead.

Please refer to the form schema definition files located at:

~\Composite\schemas\FormsControls

You will normally keep the form definition files on the website in a specific folder. To start
using them, you should specify the relative path to them in the CustomFormMarkupPath
attribute:

<EditDataAction

 Label="Edit Task"

 CustomFormMarkupPath="~\Frontend\Tasks\Forms\EditTask.xml" />

Listing 28: Using a custom form with an Edit Data action

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Actions
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DeleteDataAction
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataElements
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/DataFolderElements
http://docs.c1.orckestra.com/Data/Customizing-Datatypes/Editing-Form-Markup
http://docs.c1.orckestra.com/Data/Customizing-Datatypes/Editing-Form-Markup

Page 40 of 50 A Guide to Console Applications

10 How to Execute Custom Commands

When creating console applications, you have three ways of executing custom commands.
Each action corresponds to the approach you can take when implementing your custom
command: a workflow, a CMS function, or an ASPX page.

• WorkflowAction executes custom workflows.

• CustomUrlAction opens custom ASPX pages on the website.

• ReportFunctionAction executes CMS functions that return data in XHTML format.

10.1 How to Execute Custom Workf lows

Along with the standard data workflows, you can attach custom workflows to both existing
CMS elements and elements defined in your console applications. As a result, users will be
able to invoke these workflows in the manner they invoke the standard ones.

Figure 22: Custom workflow action

The workflow must be created and deployed within the website in advance. For information
on creating and using workflows in console applications, please read Form Workflows.

To attach a custom workflow to a tree element, you should use the WorkflowAction element:

1. Locate an element to attach the workflow to.
2. Add an Actions element within the element if necessary.
3. Add a WorkflowAction element within the Actions element.
4. Set its required attributes:

• WorkflowType: The type of the workflow

• Label: The label of the workflow action

If necessary, set its optional attributes:

• Tooltip: The custom tooltip of the workflow action

• Icon: The icon of the action

• PermissionTypes: A list of permissions on the workflow action

• Location: The location of the workflow action’s button on the toolbar

<Element Label="Products" Id="C1WorkflowDemo" Icon="pagetype-pagetype-

rootfolder" OpenedIcon="pagetype-pagetype-rootfolder-open">

 <Actions>

 <WorkflowAction

 Label="Add product..."

 ToolTip="Add a new product to this category"

 Icon="page-add-page"

 PermissionTypes="add"

 Location="Add"

 WorkflowType="C1WorkflowDemo.Workflows.AddNewProductWorkflow,

C1WorkflowDemo" />

 </Actions>

</Element>

Listing 29: Attaching a custom workflow

http://docs.c1.orckestra.com/Console/FormWorkflows
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Actions
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/WorkflowAction

Page 41 of 50 A Guide to Console Applications

10.2 How to Open ASPX Pages

The right-pane view can display ASPX pages located on the website. All you have to do is
specify its URL and select one of the views to display the ASPX page in. (For external
URLs, see Opening External URLs.)

You should put your custom ASPX pages in /Composite/InstalledPackages or
/Composite/InstalledPackages/content/views/<package name>, particularly, if you want to
use the controls defined in ~/Composite/web.config.

The URL should be relative and start with “~” (resolved by C1 CMS to the current
application path): for example, “~/HelloWorld.aspx”, which means that the ASPX page
“HelloWorld” is placed in the root folder of the website.

Based on your needs you can open the ASPX page in one of the four types of document
view:

• Generic View

• Document View

• Page Browser

• File Download View

Figure 23: ASPX page opened in the generic view

When the user selects the element you have attached your custom ASPX page to, a button
appears in the toolbar and in the context menu.

Figure 24: Custom URL action

The ASPX page must include the minimal markup (see below) to work properly. This will
ensure that the page’s title is displayed as the tab’s title.

Page 42 of 50 A Guide to Console Applications

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://www.w3.org/1999/xhtml"

xmlns:control="http://www.composite.net/ns/uicontrol">

<control:httpheaders runat="server" />

 <head runat="server">

 <title>Page title</title>

 <control:scriptloader type="sub" runat="server" />

 </head>

 <body>

 <ui:page>

 …

 </ui:page>

 </body>

</html>

Listing 30: The mimimal markup of the ASPX page for custom URL actions

To attach this action, you should use the CustomUrlAction element:

1. Locate an element to attach the workflow to.
2. Add an Actions element within the element if necessary.
3. Add a CustomUrlAction element within the Actions element.
4. Set its required attributes:

• Url: The URL to open

• Label: The label of the custom URL action

If necessary, set its optional attributes.

• Tooltip: The custom tooltip of the custom URL action

• PermissionTypes: A list of permissions on the custom URL action

• ViewType: The type of the view to open the URL in

• ViewLabel: The label of the view

• ViewToolTip: The tooltip of the view

• ViewIcon: The icon of the view

<Actions>

 <CustomUrlAction

 Label="Calendar"

 Url="~/Composite/InstalledPackages/Calendar.aspx" />

</Actions>

Listing 31: Attaching an action to open a custom URL

If the URL requires one or more “post” parameters to go with:

1. Add a PostParameters element within the CustomUrlAction element.
2. Add a Parameter element within PostParameters element.
3. Specify its required attributes:

• Key: The key part of the “post” parameter used with a custom URL

• Value: The value part of the “post” parameter used with a custom URL
4. Repeat Steps 2-3 for as many parameters as you need.

<Actions>

 <CustomUrlAction Label="Calendar"

Url="~/Composite/InstalledPackages/Calendar.aspx">

 <PostParameters>

 <Parameter Key="Style" Value="Enhanced" />

 <Parameter Key="WeekStartsOnMonday" Value="True" />

 <Parameter Key="ShowWeekNumbers" Value="True" />

 </PostParameters>

 </CustomUrlAction>

</Actions>

Listing 32: Using post parameters with a custom URL action

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Actions
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/CustomUrlAction
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/PostParameters
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Parameter

Page 43 of 50 A Guide to Console Applications

Alternatively, you can specify post parameters as part of the URL.

<Actions>

 <CustomUrlAction Label="Calendar"

Url="~/Composite/InstalledPackages/Calendar.aspx?WeekStartsOnMonday=True&am

p;ShowWeekNumbers=True" />

</Actions>

Listing 33: Appending post parameters to the URL of a custom URL action

If you use post parameters in the URL itself, you can also specify the dynamic values,
represented in the markup below with ${…} syntax.

<DataElements Type="Composite.Data.Types.IPage">

 ...

 <Actions>

 <CustomUrlAction

Url="~/WebForm1.aspx?Id=${C1:Data:Composite.Data.Types.IPage:Id}"

Label="ACTION 1!" />

 <CustomUrlAction

Url="~/WebForm1.aspx?Title=${C1:Data:Composite.Data.Types.IPage:Title}"

Label="ACTION 2!" />

 <CustomUrlAction

Url="~/WebForm1.aspx?Id=${C1:Data:Composite.Data.Types.IPage:Id}&Title=

${C1:Data:Composite.Data.Types.IPage:Title}" Label="ACTION 3!" />

 </Actions>

</DataElements>

Listing 34: Using post parameters with dynamic values in the URL

10.2.1 Opening External URLs

You can also open external URLs in a new window with the Custom URL Action. For this,
specify:

• the external URL in the Url attribute (e.g. ‘http://www.contoso.com/’)

• ‘externalview’ in the ViewType attribute

<CustomUrlAction Label="External URL action" Url="http://www.contoso.com"

ViewType="externalview" />

Note: For Internet Explorer 9, the website should be added to the “Trusted sites”; otherwise,
the popup blocker may restart the website and any unsaved changes will be lost.

10.3 How to Execute CMS Functions

You can attach actions to both existing and newly-defined tree elements to display custom
XHTML-based content in a document view by executing CMS functions.

http://www.contoso.com/

Page 44 of 50 A Guide to Console Applications

Figure 25: CMS function outputting XHTML in a document view

When the user selects the element you have attached your CMS function to, a button
appears in the toolbar and in the context menu.

Figure 26: A report function action

The CMS function must be created in advance and output the content in XHTML format.
(Read more about creating CMS functions.)

To attach such an action to an element, you should use a ReportFunctionAction element:

1. Locate an element to attach the workflow to.
2. Add an Actions element within the element if necessary.
3. Add a ReportFunctionAction element within the Actions elements.
4. Set its required attribute:

• Label: A label of the custom URL action.
5. Add a f:function element within the ReportFunctionAction element.
6. Set its required attributes:

• name: The name of the CMS function

If the function requires so:

7. Add one or more f:param elements within the f:function element.
8. Set its required attribute:

• name: The name of the CMS function’s parameter

If necessary, set its optional attribute:

• value: The value of the CMS function’s parameter

http://docs.c1.orckestra.com/Functions/XSLT
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Actions
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ReportFunctionAction
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ffunction
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/fparam

Page 45 of 50 A Guide to Console Applications

If necessary, set the optional attributes of the ReportFunctionAction element:

• Tooltip: The custom tooltip of the report function action

• Icon: The icon of the action

• PermissionTypes: A list of permissions on the report function action

• DocumentLabel: The label of the document

• DocumentIcon: The icon of the document

<Actions>

 <ReportFunctionAction Label="Task Overview" Tooltip="A quick overview of

all the tasks">

 <f:function name="DisplayTasks"

 xmlns:f="http://www.composite.net/ns/function/1.0">

 <f:param name="ShowDueDates" value="true" />

 </f:function>

 </ReportFunctionAction>

</Actions>

Listing 35: Attaching a report function action to execute a CMS function

Page 46 of 50 A Guide to Console Applications

11 How to Display Messages

C1 CMS normally displays two types of messages to the user:

• Message boxes that inform, ask, warn the user or report an error. They serve
mostly informative purposes.

Figure 27: A message box

• Confirmation boxes that ask the user to confirm the action he or she are about to do
(e.g. delete a page). If the user confirms it (by clicking “OK”) the action will be
executed; otherwise, aborted.

Figure 28: A confirmation box

11.1 How to Display Message Boxes

To attach an action to a tree element to display a message box, you should use the
MessageBoxAction element:

1. Locate an element to attach the workflow to.
2. Add an Actions element within the element if necessary.
3. Add a MessageBoxAction element within the Actions elements.
4. Set its required attribute:

• Label: The label of the action that shows the message box

• MessageBoxTitle: The title of the message box

• MessageBoxMessage: The message of the message box

If necessary, set its optional attributes:

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Actions
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/MessageBoxAction

Page 47 of 50 A Guide to Console Applications

• MessageDialogType: The type of the message box

• Icon: The icon of the action

• Tooltip: The custom tooltip of the action that shows the message box

• PermissionTypes: A list of permissions on the message box action

<Actions>

 <MessageBoxAction

 Label="GUID"

 MessageBoxTitle="${C1:Data:Composite.Data.Types.IPage:Title}"

 MessageBoxMessage="${C1:Data:Composite.Data.Types.IPage:Id}"/>

</Actions>

Listing 36: Attaching an action to display a message box

11.2 How to Display Confirmation Boxes

To attach an action to display a confirmation box, you should use a ConfirmAction element:

1. Locate an element to attach the workflow to.
2. Add an Actions element within the element if necessary.
3. Add a ConfirmAction element within the Actions elements.
4. Set its required attribute:

• Label: The label of the action

• ConfirmTitle: The title of the confirmation box

• ConfirnMessage: The message of the confirmation box
5. Add a f:function element within the ConfirmAction element.
6. Set its required attributes:

• name: The name of the CMS function

If the function requires so:

7. Add one or more f:param elements within the f:function element.
8. Set its required attribute:

• name: The name of the CMS function’s parameter

If necessary, set its optional attribute:

• value: The value of the CMS function’s parameter

If necessary, set the optional attributes of the ConfirmAction element:

• RefreshTree: When set to “true”, the tree refreshes if the user clicks “OK”

• Icon: The icon of the action

• ToolTip: The tooltip of the action

• PermissionTypes: A list of permissions on the custom URL action

• Location: The location of the action’s button on the toolbar

<Actions>

 <ConfirmAction Label="Delete Completed Tasks" Tooltip="Delete all the

tasks marked completed">

 <f:function name="Demo.Tasks.DeleteCompleted"

 xmlns:f="http://www.composite.net/ns/function/1.0" />

 </ConfirmAction>

</Actions>

Listing 37: Attaching an action to display a confirmation box

http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/Actions
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ConfirmAction
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/ffunction
http://docs.c1.orckestra.com/Console/Tree-Schema-Definition-Reference/fparam

Page 48 of 50 A Guide to Console Applications

12 Troubleshooting

In this section, you will learn to troubleshoot issues that might occur when you work with
applications in C1 CMS.

12.1 My Application Won’t Show Up Automatical ly

• Make sure that your application is configured as an “auto attachment”.

• Make sure that the markup of your application is correct and you refer to existing
types and objects in values.

12.2 There Is No “Add Applicat ion” Menu Command

• Make sure that your application is configured as an “allowed attachment”.

• Make sure that the markup of your application is correct and you refer to existing
types and objects in values.

12.3 An Application Won’t Appear in Its Own Perspective

• Make sure that you set up permissions on the perspective for users/user groups
that should access it.

12.4 There Are No Elements in the Tree

• Make sure that the markup of your application is correct and you refer to existing
types and objects in values.

• Make sure that you have used the Children element as a parent for nested
elements.

If you work with data elements:

• Make sure that you that the data type you use has data items.

• Make sure that you that you specified the data type’s name correctly.

• Make sure that the filters you apply to data elements are set up correctly.

• Make sure that the Display attribute on the element is not set to ”Compact”
accidentally. If the data element is supposed to have child elements and, it might be
hidden if it actually has none.

12.5 There Are No Action Buttons on the Toolbar / in the Menu

• Make sure that the markup of your application is correct and you refer to existing
types and objects in values.

• Make sure that you have used the Actions element as a parent for actions.

12.6 I Can’t Attach EditDataAction to an Element

• Make sure that the element you want to attach the action is either DataElements or
DataFolderElements. You cannot attach this action to Element or ElementRoot.

12.7 I Can’t Attach DeleteDataAction to an Element

• Make sure that the element you want to attach the action is either DataElements or
DataFolderElements. You cannot attach this action to : Element or ElementRoot.

Page 49 of 50 A Guide to Console Applications

13 Test Your Knowledge

13.1 Task: Create an Applicat ion to Attach to Pages

1. Create the tree definition file “TestApps.xml”.
2. Set up the application so that users can attach it to pages manually

(“Composite.Data.Types.IPage”).
3. Set its name to “Test Apps”.
4. Select a page in “Content” and check for “Add application” in its context menu.
5. Click “Add application” and check for “Test Apps” to appear on the list.

13.2 Task: Attach a Message Box to Pages

1. Edit “TestApps.xml”.
2. Set up the application to auto-attach to pages.
3. Add the message box action to the root element of the tree structure.
4. Set its label, title and message to “Hello World”.
5. Select a page in “Content” and check for the “Hello World” button on the toolbar.
6. Click the button and check for the message box.

13.3 Task: Attach the Applicat ion to Its Own Perspective

1. Edit “TestApps.xml”.
2. Set up the application to auto-attach to its own perspective.
3. Add a simple element to the application tree structure with the label “Contacts” and

ID “ContactsPerspective”.
4. Insert another simple element in the “Contacts” element with the label “Contacts”

and ID “ContactsTree”.
5. Grant permissions to the new perspective in “Users”
6. Check for the new perspective and the “Contacts” element in it.

13.4 Task: Retrieve Data Elements from a Data Type

1. Create the data type “Test.Contacts” and add fields: “Name” (string), “Company”
(string) and “Country” (string).

2. Add five or more contacts to the data type only using either “CompanyA” or
“CompanyB” and “US” and “Denmark”.

3. Edit “TestApps.xml”.
4. As a child of the “Contacts” element, add the element that retrieves its data items

from the “Test.Contacts” data type.
5. Check for the items in the “Contacts” perspective.

13.5 Task: Group Data Elements

1. Edit “TestApps.xml”.
2. Within the “Contacts” element with the ID of ”ContactsTree”, insert the data folders

element that group the “Test.Contacts” data items by the “Company” field.
3. Move the “Test.Contacts” data elements into the data folders element.
4. Check for the data folders that group data items in the “Contacts” perspective by

“Company”.

13.6 Task: Sort Data Elements

1. Edit “TestApps.xml”.
2. Sort the “Test.Contacts” data elements by “Name” in descending order.

Page 50 of 50 A Guide to Console Applications

3. Check for the sorting order of data elements in the “Contacts” perspective.

13.7 Task: Fi lter Data Elements

1. Edit “TestApps.xml”.
2. Filter data elements by “Country” only selecting contacts from Denmark.
3. Check for the contacts now present in the “Contacts” perspective.

Hint: To hide empty parent elements (data folders) unless they have child elements (data
elements), set the Display attribute on the former to “Compact”.

13.8 Task: Attach Data Actions to Elements

1. Edit “TestApps.xml”.
2. Within the simple “Contacts” elements with the ID of “ContatcsTree”, insert an

action to add data items of the “Test.Contacts” type. Set its label to “Add Contact”.
3. Repeat Step 2 within the data folders element with “Company” as its grouping field.
4. Within the data elements of the “Test.Contacts” type, insert actions to edit and

delete data items. Set its labels to “Edit Contact” and “Delete Contact”.
5. In the “Contacts” perspective, Check for the buttons when selecting the “Contacts”

element, a grouping data folder element, a data item.
6. Add, edit and delete data items.

13.9 Task: Open an ASPX Page

1. Create an ASPX file with simple content in the root of the website.
2. Edit “TestApps.xml”.
3. Within the simple “Contacts” elements with the ID of “ContactsTree”, add an action

to open this ASPX file in the view.
4. Set its label to “Open Page”.
5. In the “Contacts” perspective, check for the “Open Page” button.
6. Click the button and check the result.

13.10 Task: Execute a CMS Function

1. Create an XSLT function that outputs simple XHTML.
2. Edit “TestApps.xml”.
3. Within the simple “Contacts” elements with the ID of “ContactsTree”, add an action

to execute the XSLT function.
4. Set its label to “Execute Function”.
5. In the “Contacts” perspective, check for the “Execute Function” button.
6. Click the button and check the result.

	1 Introduction
	1.1 Who Should Read This Guide?
	1.2 Getting Started
	1.3 Terms and Abbreviations

	2 An Overview of Console Applications
	2.1 A General Procedure of Creating Console Applications
	2.2 Creating a Tree Definition File
	2.2.1 Schema Definition File

	2.3 A Quick Overview of a Tree Definition
	2.3.1 Root Element and Namespaces

	3 How to Attach Console Applications
	3.1 How to Auto-Attach Applications
	3.2 How to Allow Attaching Applications Manually

	4 How to Attach Elements to Tree Structures
	4.1 Simple Elements
	4.2 Data Elements
	4.3 How to Use Values from Data Type Fields
	4.4 How to Use Localized Strings
	4.5 How to Display Elements in Custom Perspectives
	4.6 How to Group Multiple Tree Definitions in One Perspective
	4.7 How to Display Custom URLs in the C1 Console for Elements

	5 How to Group Data Elements
	6 How to Sort Data Elements
	7 How to Filter Data Elements
	7.1 How to Filter Data Elements by Parent ID
	7.2 How to Filter Data Elements by Field
	7.3 How to Filter Data Elements with CMS Functions
	7.3.1 Example of Creating and Using a Filter Function

	8 How to Attach Actions to Tree Elements
	9 How to Execute Standard Data Workflows
	9.1 How to Add Data
	9.2 How to Edit Data
	9.3 How to Delete Data
	9.4 How to Use Custom Forms

	10 How to Execute Custom Commands
	10.1 How to Execute Custom Workflows
	10.2 How to Open ASPX Pages
	10.2.1 Opening External URLs

	10.3 How to Execute CMS Functions

	11 How to Display Messages
	11.1 How to Display Message Boxes
	11.2 How to Display Confirmation Boxes

	12 Troubleshooting
	12.1 My Application Won’t Show Up Automatically
	12.2 There Is No “Add Application” Menu Command
	12.3 An Application Won’t Appear in Its Own Perspective
	12.4 There Are No Elements in the Tree
	12.5 There Are No Action Buttons on the Toolbar / in the Menu
	12.6 I Can’t Attach EditDataAction to an Element
	12.7 I Can’t Attach DeleteDataAction to an Element

	13 Test Your Knowledge
	13.1 Task: Create an Application to Attach to Pages
	13.2 Task: Attach a Message Box to Pages
	13.3 Task: Attach the Application to Its Own Perspective
	13.4 Task: Retrieve Data Elements from a Data Type
	13.5 Task: Group Data Elements
	13.6 Task: Sort Data Elements
	13.7 Task: Filter Data Elements
	13.8 Task: Attach Data Actions to Elements
	13.9 Task: Open an ASPX Page
	13.10 Task: Execute a CMS Function

