

Orckestra, Europe

Nygårdsvej 16

DK-2100 Copenhagen

Phone +45 3915 7600

www.orckestra.com

C1 CMS – IData Interface

2017-02-14

Page 2 of 23 C1 CMS – IData Interface

Contents

1 INTRODUCTION .. 4

2 SUPER INTERFACES.. 6

2.1 IData 6
2.2 IPublishControlled 6
2.3 ILocalizedControlled 6

3 INTERFACE ATTRIBUTES ... 8

3.1 Required Attributes 8
3.1.1 ImmutableTypeId Attribute 8
3.1.2 KeyPropertyName Attribute 8
3.1.3 DataScope Attribute 8

3.2 Optional Attributes 9
3.2.1 Title Attribute 9
3.2.2 AutoUpdateble Attribute 9
3.2.3 LabelPropertyName Attribute 9
3.2.4 RelevantToUserType Attribute 9
3.2.5 Caching Attribute 10
3.2.6 PublishProcessControllerType Attribute 10

3.3 Expert Attributes 10
3.3.1 PublishControlledAuxiliary Attribute 10
3.3.2 BuildNewHandler Attribute 10

4 PROPERTY ATTRIBUTES .. 12

4.1 Required Attributes 12
4.1.1 ImmutableFieldId Attribute 12
4.1.2 StoreFieldType Attribute 12

4.2 Optional Attributes 13
4.2.1 DefaultFieldValue Attribute 13
4.2.2 ForeignKey Attribute 13
4.2.3 FunctionBasedNewInstanceDefaultFieldValue Attribute 14

4.3 Validation Attributes 14
4.3.1 NotNullValidator 14
4.3.2 RegexValidator 14
4.3.3 DecimalPrecisionValidatorAttribute 14
4.3.4 GuidNotEmptyAttribute 14
4.3.5 IntegerRangeValidatorAttribute 14
4.3.6 StringLengthValidatorAttribute 15
4.3.7 NullStringLengthValidatorAttribute 15

5 RESERVED ATTRIBUTES .. 16

6 OBSOLETE ATTRIBUTES .. 17

7 CREATING A PUBLISHABLE DATA TYPE ... 18

8 CREATING A PAGE FOLDER DATA TYPE ... 19

8.1 Minimal example 19

9 CREATING A PAGE META DATA TYPE.. 20

9.1 Minimal example 20

10 MANUALLY ADDING A META TYPE TO A PAGE (BRANCH) 21

Page 3 of 23 C1 CMS – IData Interface

10.1 Minimal Example 21

11 MANUALLY ADDING A NEW META DATA CATEGORY (TAB) 22

11.1 Minimal Example 22

12 MANUALLY ADDING OR REMOVING A DATA TYPE 23

12.1 Adding 23
12.2 Removing 23

Page 4 of 23 C1 CMS – IData Interface

1 Introduction

A big part of C1 CMS is the data services - C1 CMS uses LINQ as the primary interface to
query data, and all data is 100% based on CLR types. Thus .NET types (interfaces) play a
big role when querying and working with data in C1 CMS.

The data layer in C1 CMS totally abstracts the underlying stores like SQL Server or XML
files away from the developer without sacrificing developer control. Instead of writing SQL
statements or XML queries to get data, you write LINQ statements.

All data items have one common interface they all inherit from: Composite.Data.IData. In C1
CMS’s terminology an IData is what database developers would call a “table” or “schema” –
an interface that inherits from IData is a definition of a data object which holds properties
(name, type) and meta data like primary keys, foreign keys etc.

You can write a LINQ query without caring about the underlying store. If the underlying store
is a SQL Server, then the LINQ query will be translated into a perfectly optimized SQL
statement that gets the job done. And the same query, without any rewriting or even
recompiling, can be used if the underlying store is XML – or any other kind of store for that
matter.

Below is an example of a query that works for any data store (SQL, XML, …)

using (DataConnection connection = new DataConnection())

{

var q =

 from page in connection.Get<IPage>()

 where page.Title == "My Title"

 orderby page.UrlTitle

 select page;

}

Here is another example that will result in an inner join statement in the SQL database and
in-memory object join when XML is used.

using (DataConnection connection = new DataConnection())

{

var q =

 from page in connection.Get<IPage>()

 from pagetype in connection.Get<IPageType>()

 where page.PageTypeId == pagetype.Id

 orderby page.Title

 select new { page.Title, pagetype.Name };

}

The last example shows a query that will result in a left outer join in the SQL database and
in-memory object join when XML is used.

using (DataConnection connection = new DataConnection())

{

var q =

 from pagetype in connection.Get<IPageType>()

 join page in connection.Get<IPage>() on pagetype.Id equals

page.PageTypeId into sub

 from s in sub.DefaultIfEmpty()

 select s;

}

In all these examples IPage and IPageType are data interfaces that inherit from the base
data interface IData. Below is a minimal example of a data type in C1 CMS:

Page 5 of 23 C1 CMS – IData Interface

[KeyPropertyName("Id")]

[DataScope(DataScopeIdentifier.PublicName)]

[ImmutableTypeId("{87122C34-E622-4e97-BD36-CBC398B862F9}")]

public interface IPerson : IData

{

 [StoreFieldType(PhysicalStoreFieldType.Guid)]

 [ImmutableFieldId("{172DD44C-426B-4812-834B-6B45366E78CB}")]

 Guid Id { get; set; }

 [StoreFieldType(PhysicalStoreFieldType.String, 249)]

 [ImmutableFieldId("{ADB24D3D-FA2A-496a-BBE9-91CFEB88336F}")]

 string Name { get; set; }

}

As seen in this example, the class and field attributes are heavily used. C1 CMS uses these
attributes as meta-information about the data type – much like you have more information
about SQL tables than just the table name and column name / type. This information is used
throughout the system, from the low-level data store to the UI and is the basis of data types
in C1 CMS.

Please note that these custom data interfaces must be defined in a Class Library project,
built as an assembly (DLL) and placed in /Bin. You cannot create them in /App_Code.

If you were to create a new Data Type using the Data type wizards in the C1 CMS console,
restart the C1 CMS site (Tools | Restart Server) and then examine
“/bin/Composite.Generated.dll” using a program like .NET Reflector you would see that your
data definition is actually a CLR type now, with properties and attributes like, the one shown
above.

So – in short – all data schemas are defined as CLR types (interfaces) whether they are
defined by C1 CMS (like pages, users, templates etc.), you as a C# developer or users that
use the visual data creation tools. And they are all accessible via LINQ.

When you are working with custom IData you typically only define an interface – concrete
classes are generated by C1 CMS automatically.

In this document we will go into the technical detail about the C1 CMS IData concept. The
intended audience is C# developers who need to create custom data types for use in C1
CMS. The document will describe how to prepare your custom IData for features like
publishing workflow, page meta data, content localization and more.

Page 6 of 23 C1 CMS – IData Interface

2 Super interfaces

By making your data type inherit from one or more of the data interfaces in C1 CMS you can
“subscribe” to functionality and behavior to your type. The currently super data interfaces
supplied by C1 CMS are described below.

2.1 IData

All data types in C1 CMS have to derive from the IData interface.

2.2 IPublishControl led

If your type should support publishing workflows, your type has to derive from the
IPublishControlled interface. Types that support publishing can exist in two scopes:

 administrated

 public

Published data is used when pages are rendered for the public site. See the Creating a
publishable data type section for more information on types that support publishing
workflows. Actually, IPublishControlled is an IData itself that has some special handling in
C1 CMS. Here is how it’s defined:

[DataScope(DataScopeIdentifier.PublicName)]

[DataScope(DataScopeIdentifier.AdministratedName)]

public interface IPublishControlled : IProcessControlled

{

 [StoreFieldType(PhysicalStoreFieldType.String, 64, IsNullable = false)]

 [ImmutableFieldId("{FAB1CF0C-66B0-11DC-A47E-CF6356D89593}")]

 [DefaultFieldStringValue("")]

 [BeforeSet(typeof(PublishControlledSetPropertyHandler))]

 [FieldPosition(50)]

 string PublicationStatus { get; set; }

}

So, when your interface inherits the IPublishControlled interface, a property is added to your
type. Also, two data scopes are added.

2.3 ILocalizedControl led

If your type should support localization workflows, your type has to derive from the
ILocalizedControlled interface. Types that support localization can have instances with the
same ID in each active locale in a running system. In other words, if da-DK, en-US and it-IT
locales have been added to a running C1 CMS solution, then an instance of your type with
the ID of ‘X’ can exist in those three locales, but do not have to. If at one point a request to
rendering a page in the en-US locale is made and data of your type is requested, only
instances that have been added to the en-US scope will be returned. Like
IPublishControlled, ILocalizedControlled is also just a specialized IData interface with some
special handling in C1 CMS:

Page 7 of 23 C1 CMS – IData Interface

public interface ILocalizedControlled : IProcessControlled

{

 [StoreFieldType(PhysicalStoreFieldType.String, 16)]

 [ImmutableFieldId("{E271D3EB-A8EB-49ea-9BB5-E5A54F88298F}")]

 [NotNullValidator()]

 [DefaultFieldStringValue("")] // Invariant

 string CultureName { get; set; }

 [StoreFieldType(PhysicalStoreFieldType.String, 16)]

 [ImmutableFieldId("{0456EBB0-7FB1-46cd-9A23-4AE9AA3337FA}")]

 [NotNullValidator()]

 [DefaultFieldStringValue("")] // Invariant

 string SourceCultureName { get; set; }

}

Page 8 of 23 C1 CMS – IData Interface

3 Interface Attributes

The following are interface attributes grouped as:

 Required attributes

 Optional attributes

 Expert attributes

3.1 Required Attributes

These are required attributes:

 ImmutableTypeId Attribute

 KeyPropertyName Attribute

 DataScope Attribute

Please consider using the LabelPropertyName attribute, too, to provide user-friendly labels
for data items, for example, in function parameters of the DataReference<T> type.
Otherwise, GUID-like labels will be used.

3.1.1 ImmutableTypeId Attr ibute

This attribute specifies a unique ID for the type. The ID should be unique for the running C1
CMS solution. The value of the argument should be a string representation of a GUID. This
unique ID is used by C1 CMS to identify the type. This means that it is possible to rename
the type and the type would still work. Though, when coding your own type and using the
type name in code (your own or code that might use yours), the same compile rules apply
as those with normal C# interfaces. Example:

[ImmutableTypeId("{D261B424-3629-4e00-9D24-BDA763DE8DD8}")]

3.1.2 KeyPropertyName Attr ibute

Use this attribute to specify one or more key property names. A key property is the property
that will be used as a key for data type. No more than one instance of your data type may
have the same key value (or keys values) in a given scope. The value of the argument
should be a string with the name of one of the properties of your interface. Example:

[KeyPropertyName("Id")]

3.1.3 DataScope At tr ibute

This attribute specifies which data scopes items of the data types should exist in. Currently
two scopes are supported: DataScopeIdentifier.Public and
DataScopeIdentifier.Administrated. If your type should not support publishing workflows,
then add this attribute once with the value DataScopeIdentifier.PublicName. If your type
should support publishing workflows, you should add this attribute twice with the argument
values: DataScopeIdentifier.PublicName and DataScopeIdentifier.AdministratedName. See
the Creating a publishable data type section for more information on types that support
publishing workflows.

Examples:

[DataScope(DataScopeIdentifier.PublicName)]

and

Page 9 of 23 C1 CMS – IData Interface

[DataScope(DataScopeIdentifier.AdministratedName)]

3.2 Optional Attr ibutes

These are optional attributes:

 Title Attribute

 AutoUpdateble Attribute

 LabelPropertyName Attribute

 RelevantToUserType Attribute

 Caching Attribute

 PublishProcessControllerType Attribute

3.2.1 T it le Att r ibute

Use this attribute to assign a more user-friendly name for your type. The value of the
argument should be a string. This will be used by C1 CMS when the type’s name needs to
be displayed in the UI. Example:

[Title("Employee")]

3.2.2 AutoUpdateble Attr ibute

This attribute will make C1 CMS auto add and update your type. The type will be added to
the default data provider when data is added for the first time. If reading data is done before
the type has been added, zero items are returned. If you change your type, adding a new
property, then C1 CMS will update the underlying data store automatically. If you omit this
attribute, you have to manually add it to the data layer and future changes to the type also
have to be made manually. It is recommended that your type has this attribute. See the
Manually adding or removing a data type to or from C1 CMS chapter for manually adding
and removing a data type. Example:

[AutoUpdateble]

3.2.3 LabelPropertyName At tr ibute

Use this attribute to specify which property value should be used as label for items of the
data type. The label is used when listing items in trees or other kinds of lists.

If the property used as a label is nullable (optional) or is a string and the value of the
property is null, then the title will be of the form: “(undefined [PROPERTY_NAME])”, where
PROPERTY_NAME is the name of the property specified with this attribute.

If the property is a reference property (See ForeignKey attribute) then the label of the
referenced data will be displayed. The value of the argument should be a string with exactly
the same name and casing as one of the properties of your interface. Example:

[LabelPropertyName("Name")]

Although this attribute is optional, we recommend using it to provide user-friendly labels for
data items, for example, in function parameters of the DataReference<T> type.

3.2.4 RelevantToUserType At tr ibute

If you add this attribute to your type then your type will be selectable in the UI. Examples:
Data references, adding a Visual function for your type and being a part of the functions
calls in XSLT functions. At the moment the only supported argument value for this attribute
is: UserType.Developer. Example:

Page 10 of 23 C1 CMS – IData Interface

[RelevantToUserType(UserType.Developer)]

3.2.5 Caching Att r ibute

By specifying this attribute on your type, instances of your type will be cached by C1 CMS,
thus making data access to your type faster. Caching is done in memory, so avoid caching a
type where large data sets are expected. Example:

[Caching(CachingType.Full)]

3.2.6 Publ ishProcessContro l lerType At tr ibute

When your type supports publishing workflows this attribute should be specified. The value
of the argument should be a type that implements the IPublishProcessController interface.
For a default behavior you can use the type GenericPublishProcessController as an
argument value for this attribute. See the Creating a publishable data type chapter for more
information on types that supports publishing workflows. Example:

[PublishProcessControllerType(typeof(GenericPublishProcessController))]

3.3 Expert Attr ibutes

These are expert attributes:

 PublishControlledAuxiliary Attribute

 BuildNewHandler Attribute

3.3.1 Publ ishContro l ledAuxi l iary Attr ibute

Use this attribute to get some custom code to run after the IPublishProcessController has
done its work. The argument value of this attribute should be a type that implements the
interface IPublishControlledAuxiliary. See the Creating a publishable data type chapter for
more information on types that supports publish workflows. Example:

public class MyPublishControlledAuxiliary : IPublishControlledAuxiliary

{

 // IPublishControlledAuxiliary Members

}

[PublishControlledAuxiliary(typeof(MyPublishControlledAuxiliary))]

public interface IMyData : IData

{

 // Properties

}

3.3.2 Bui ldNewHandler Attr ibute

When the DataConnection.New<T>() is made, an object of a type that implements T is
created. If you want to control which type is used to create a new object, then you should
add this attribute to your type. The value of the argument should be a type value to a type
that implements the interface IBuildNewHandler. Example:

Page 11 of 23 C1 CMS – IData Interface

public class MyBuildNewHandler : IBuildNewHandler

{

 // IBuildNewHandler Members

}

[BuildNewHandler(typeof(MyBuildNewHandler))]

public interface IMyData : IData

{

 // Properties

}

Page 12 of 23 C1 CMS – IData Interface

4 Property Attributes

The following are property attributes grouped as:

 Required attributes

 Optional attributes

 Validation attributes

4.1 Required Attributes

These are required attributes:

 ImmutableFieldId Attribute

 StoreFieldType Attribute

4.1.1 ImmutableFie ldId At tr ibute

This attribute specifies a unique ID for the property. The ID should be unique for the running
C1 CMS solution. The value of the argument should be a string representation of a GUID.
This unique ID is used by C1 CMS to identify the property. This means that it is possible to
rename the property and the type would still work. Though, when coding your own type and
using the property name in code (your own or code that might use yours), the same compile
rules apply as with normal C# interfaces. Example:

[ImmutableFieldId("{D261B424-3629-4e00-9D24-BDA763DE8DD8}")]

4.1.2 StoreFieldType Attr ibute

This attribute specifies the underlying type of a given property. This information is passed to
the data provider (i.e. XML or SQL) and used by the data provider when a type needs to be
created on the underlying data layer. The first argument is required and should be the value
of PhysicalStoreFieldType. There are two optional arguments, the first one is the max length
and can only be used with the first argument value of PhysicalStoreFieldType.String. The
max length value specifies that the strings stored in the given property will never be longer
than the specified max length. The second one is the numeric precision and numeric scale
and these can only be used with the first argument value of PhysicalStoreFieldType.Decimal
and specify the precision and scale of the decimal values that the property will hold. All
properties can be made nullable by using the optional argument IsNullable.

Below is a total list of possible PhysicalStoreFieldTypes:

Page 13 of 23 C1 CMS – IData Interface

[StoreFieldType(PhysicalStoreFieldType.Boolean)]

bool IsChild { get; set; }

[StoreFieldType(PhysicalStoreFieldType.DateTime)]

DateTime Created { get; set; }

[StoreFieldType(PhysicalStoreFieldType.Decimal, 10, 2)]

decimal Price { get; set; }

[StoreFieldType(PhysicalStoreFieldType.Guid)]

Guid Id { get; set; }

[StoreFieldType(PhysicalStoreFieldType.Integer)]

int Level { get; set; }

[StoreFieldType(PhysicalStoreFieldType.LargeString)]

string Description { get; set; }

[StoreFieldType(PhysicalStoreFieldType.Long)]

long Distance { get; set; }

[StoreFieldType(PhysicalStoreFieldType.String, 128)]

string Name { get; set; }

Example of the nullable:

[StoreFieldType(PhysicalStoreFieldType.Guid, IsNullable=true)]

Guid Id { get; set; }

4.2 Optional Attr ibutes

These are optional attributes:

 DefaultFieldValue Attribute

 ForeignKey Attribute

 FunctionBasedNewInstanceDefaultFieldValue Attribute

4.2.1 DefaultFie ldValue At tr ibute

This attribute is passed to the data provider and thereby the underlying data layer (i.e. SQL
or XML). This is not used for giving your properties a value when an instance of your type is
first created (DataConnection.New<T>()). For assigned values to properties of newly
created (DataConnection.New<T>()) instances of your type, see the
FunctionBasedNewInstanceDefaultFieldValue Attribute section for more information. But
this is used if, for example, a new property is added to your type and the SQL data provider
needs to extend the given table with a new column. Then all existing records will get the
value of this attribute’s value. You can use one of the following attributes:
DefaultFieldStringValueAttribute, DefaultFieldIntValueAttribute,
DefaultFieldDecimalValueAttribute, DefaultFieldBoolValueAttribute,
DefaultFieldGuidValueAttribute, DefaultFieldNewGuidValueAttribute or
DefaultFieldNowDateTimeValueAttribute.

4.2.2 ForeignKey At tr ibute

This attribute can be used to specify a relation from your type to another existing data type.
In C1 CMS, when given a data item where the type is “pointing” to one or more other types,
it is easy to get the data items that are “pointed” to. Also, cascade deletes and reference
integrity are performed when AddNew, Update or Delete is performed for types with
references to other types.

The two primary and required arguments for this attribute are the type that your type is
“pointing” to and the name of the key property of that type.

Page 14 of 23 C1 CMS – IData Interface

There are also four optional arguments. AllowCascadeDeletes can be specified to
enable/disable cascade deletes. NullReferenceValue, NullReferenceValueType,
NullableString are used to control the behavior of null references. NullReferenceValue
specifies the value for a null reference. NullReferenceValueType specifies the type of the
null reference value.

Ex: “{00000000-0000-0000-0000-000000000000}” as the value and typeof(Guid) as the
value type

 NullableString can be set to true to allow null to be used as a non-reference value.

For sample code, please see “Static IData Types”, Example #2.

4.2.3 Funct ionBasedNewInstanceDefaul tF ie ldValue Attr ibute

This attribute can be used to have C1 CMS assign a value to newly build instances of your
data type. This is not the same as using the DefaultFieldValue attribute, see
DefaultFieldValue Attribute for more information. The value of the argument to this attribute
is a function markup call. A call to this function will be made when
DataConnection.New<T>() is done. And the value of that function call will be assigned to the
property where this attribute is specified.

4.3 Validation Attributes

Common for all validation attributes is that when adding or updating a data item, validation
is done by C1 CMS and an exception is thrown if validation fails. When editing data on the
client, these exceptions are shown as balloons if validation fails. Some of the validation
attributes will result in client side validation.

4.3.1 NotNul lVal idator

Use this attribute to specify that the property (if nullable, including strings) shall have a
value. This attribute will also be used by the client (client-side validation) so that the user will
be shown a warning (“Required” in red) if no value is entered.

4.3.2 RegexVal idator

Use this attribute to specify that property should conform to the given regular expression.
This attribute will also be used by the client (client-side validation) so that the user will be
shown a warning if the value does not conform to the given regular expression.

4.3.3 Dec imalPrec is ionValidatorAt tr ibute

Use this attribute to specify that the property should conform to the given decimal precision.

4.3.4 GuidNotEmptyAt tr ibute

Use this attribute to specify that empty GUIDs (0-guids) are not allowed as a value for the
given property.

4.3.5 IntegerRangeValidatorAt tr ibute

Use this attribute to specify the range that the value of the given property must lie within.

http://docs.c1.orckestra.com/StaticIDataTypesInC1Console
http://users.c1.orckestra.com/Functions/GuideToC1Functions/What-is-a-CMS-Function

Page 15 of 23 C1 CMS – IData Interface

4.3.6 Str ingLengthVal idatorAt tr ibute

This attribute allows the length of the string-property value to lie within the range indicated
by two numbers.

4.3.7 Nul lStr ingLengthVal idatorAt tr ibute

This attribute allows the string-property value to be a null string or a string the length of
which lie within the range indicated by two numbers.

Page 16 of 23 C1 CMS – IData Interface

5 Reserved attributes

The following attributes are reserved and should never be used as the support for them
might be changed or removed in the future.

 CodeGenerated Attribute

 FieldPosition Attribute

 GroupByPriority Attribute

 AssociationVisabilityType Attribute

 DataAssociation Attribute

Page 17 of 23 C1 CMS – IData Interface

6 Obsolete Attr ibutes

The following attributes should never be used as the support for them might be removed in
the future.

 BeforeSetAttribute

 VersionProcessControllerTypeAttribute

Page 18 of 23 C1 CMS – IData Interface

7 Creating a publishable data type

To create a publishable data type like IPage, your type has to derive from the
IPublishControlled interface.

Two interface attributes are also required, namely DataScope and
PublishProcessControllerType. There is one optional attribute to consider when creating a
publishable data type and that is PublishControlledAuxiliary.

Page 19 of 23 C1 CMS – IData Interface

8 Creating a Page folder data type

The sample code and its key pointers in the following sections demonstrate how to create a
Page folder data type.

8.1 Minimal example

[AutoUpdateble]

[DataScope(DataScopeIdentifier.PublicName)]

[ImmutableTypeId("{500AF1F0-998D-47c8-A411-C42DB7711D43}")]

[DataAncestorProvider(typeof(NoAncestorDataAncestorProvider))]

public interface IMyDataFolder : IPageFolderData

{

 [StoreFieldType(PhysicalStoreFieldType.String, 255)]

 [ImmutableFieldId("{47459211-C41F-4065-93BE-731E87A991DA}")]

 string Title { get; set; }

}

Page 20 of 23 C1 CMS – IData Interface

9 Creating a Page meta data type

The sample code and its key pointers in the following sections demonstrate how to create a
meta data type.

9.1 Minimal example

[AutoUpdateble]

[ImmutableTypeId("{49F23108-2EA8-4f1b-945F-30676777F8AB}")]

[DataAncestorProvider(typeof(NoAncestorDataAncestorProvider))]

public interface IMyMetaData : IPageMetaData

{

 [StoreFieldType(PhysicalStoreFieldType.String, 255)]

 [ImmutableFieldId("{1F3F5C32-4075-4899-89B6-9C01A041B712}")]

 string Title { get; set; }

}

Page 21 of 23 C1 CMS – IData Interface

10 Manually adding a meta type to a page (branch)

The sample code and its key pointers in the following sections demonstrate how to manually
add a meta type to a page.

10.1 Minimal Example

using (DataConnection connection = new

DataConnection(PublicationScope.Unpublished))

{

 IPage page = connection.Get<IPage>().Last(); // The page in question

 Guid containerId =

PageMetaDataFacade.GetAllMetaDataContainers().First().Key;

 Guid myTypeId = typeof(IMyDataType).GetImmutableTypeId();

 Page.AddMetaDataDefinition("MyName", "MyLabel", containerId, myTypeId);

 // Adding default values

 IMyDataType newDataTemplate = DataConnection.New<IMyDataType>();

 newDataTemplate.Name = "Some name";

 // Fill in the rest of the fields

 page.AddNewMetaDataToExistingPages("MyName", newDataTemplate);

}

Page 22 of 23 C1 CMS – IData Interface

11 Manually adding a new meta data category (tab)

By default, a “Meta Data” category (tab) exists in C1 CMS. If no new categories are added,
then all meta data added through the UI will be added to this category. It is possible to
create and add a new category to C1 CMS. Below is an example of how to add a new meta
data category. You can use your own categories when you are adding meta data to a page
manually.

11.1 Minimal Example

using (DataConnection connection = new DataConnection())

{

 ICompositionContainer compositionContainer =

DataConnection.New<ICompositionContainer>();

 compositionContainer.Id = Guid.NewGuid();

 compositionContainer.Label = "My Container";

 compositionContainer =

connection.Add<ICompositionContainer>(compositionContainer);

}

Page 23 of 23 C1 CMS – IData Interface

12 Manually adding or removing a data type

The sample code in the following sections demonstrates how to manually add or remove a
data type in C1 CMS.

12.1 Adding

If you want to add your data type to the system, you should at one point make this call:

DynamicTypeManager.EnsureCreateStore(typeof(IMyDataType));

It is safe to call this repeatedly, but it is recommended only doing it one time per system
startup.

12.2 Removing

If you want to remove your type from the system, you do the following:

DataTypeDescriptor dtd =

DynamicTypeManager.GetDataTypeDescriptor(typeof(IMyDataFolder));

DynamicTypeManager.DropStore(dtd);

This can only be call one time.

	1 Introduction
	2 Super interfaces
	2.1 IData
	2.2 IPublishControlled
	2.3 ILocalizedControlled

	3 Interface Attributes
	3.1 Required Attributes
	3.1.1 ImmutableTypeId Attribute
	3.1.2 KeyPropertyName Attribute
	3.1.3 DataScope Attribute

	3.2 Optional Attributes
	3.2.1 Title Attribute
	3.2.2 AutoUpdateble Attribute
	3.2.3 LabelPropertyName Attribute
	3.2.4 RelevantToUserType Attribute
	3.2.5 Caching Attribute
	3.2.6 PublishProcessControllerType Attribute

	3.3 Expert Attributes
	3.3.1 PublishControlledAuxiliary Attribute
	3.3.2 BuildNewHandler Attribute

	4 Property Attributes
	4.1 Required Attributes
	4.1.1 ImmutableFieldId Attribute
	4.1.2 StoreFieldType Attribute

	4.2 Optional Attributes
	4.2.1 DefaultFieldValue Attribute
	4.2.2 ForeignKey Attribute
	4.2.3 FunctionBasedNewInstanceDefaultFieldValue Attribute

	4.3 Validation Attributes
	4.3.1 NotNullValidator
	4.3.2 RegexValidator
	4.3.3 DecimalPrecisionValidatorAttribute
	4.3.4 GuidNotEmptyAttribute
	4.3.5 IntegerRangeValidatorAttribute
	4.3.6 StringLengthValidatorAttribute
	4.3.7 NullStringLengthValidatorAttribute

	5 Reserved attributes
	6 Obsolete Attributes
	7 Creating a publishable data type
	8 Creating a Page folder data type
	8.1 Minimal example

	9 Creating a Page meta data type
	9.1 Minimal example

	10 Manually adding a meta type to a page (branch)
	10.1 Minimal Example

	11 Manually adding a new meta data category (tab)
	11.1 Minimal Example

	12 Manually adding or removing a data type
	12.1 Adding
	12.2 Removing

